
Singlet−Triplet Gaps through Incremental Full Configuration
Interaction
Paul M. Zimmerman*

Department of Chemistry, University of Michigan 930 North University Avenue, Ann Arbor, Michigan 48109, United States

*S Supporting Information

ABSTRACT: The method of increments is herein applied to produce accurate singlet−triplet gaps in
a variety of challenging polyatomic systems involving main group elements. This strategy computes
incremental Full Configuration Interaction (iFCI) energies for the two spin states in a size-extensive
n-body expansion. iFCI avoids exponential costs when n is small and thus is dependent on choice of
reference function to maintain good accuracy at polynomial cost. The new algorithm presented in this
article therefore employs a high-spin perfect pairing reference to capture the major qualities of the
singlet and triplet wave functions at n = 0. Systematic studies will show that singlet−triplet gap
predictions approach 1 kcal/mol accuracy at small n (n ≤ 3) compared with available experimental
and high-level theoretical values.

■ INTRODUCTION

Diradicals have distinct chemical characteristics compared with
common closed-shell electronic states.1−3 While many
electronic structure methods treat the latter effectively,
diradicals (and more broadly, diradicaloids) pose greater
difficulties for simulation.4,5 To correctly simulate these states,
nontrivial treatments of static and dynamic correlation are
needed to reach quantitative accuracy. These challenges are
manifest in the computation of singlet−triplet energy gaps,
where singlets and triplets of widely varying character must be
correctly described for consistently accurate results.
Numerous methods are capable of computing singlet−triplet

gaps when the singlet is closed shell and the triplet can be
represented by a single determinant with two unpaired alpha
(or beta) electrons (Scheme 1, bottom). In contrast, singlet
diradicals occur when high-lying valence orbitals are close to
degenerate, and these cannot be treated with a single-electron
configuration (Scheme 1, top). It is these cases that make
popular single-reference mean-field methods qualitatively fail
and apply the most stress to wave function theories. In the
general case, multireference techniques are often assumed
necessary to treat these strongly correlated wave functions.
Accurate total energies, however, are not totally necessary for
obtaining quality singlet−triplet gaps because the difference in
energies is most important. Relative energies can thus be
computed at relatively lower cost by specifically targeting the
gap between states.6,7

The spin-flip class of methods is designed to reduce costs by
computing accurate gaps between electronic states rather than
accurate total energies.8−10 Instead of computing the singlet
and triplet states independently and to high accuracy, spin flip
starts from a high-spin reference (e.g., a triplet, restricted open-
shell Hartree−Fock (ROHF) determinant) and flips spins to

the ms = 0 manifold where the singlet and triplet coexist. This
strategy leads to a relatively balanced description of high- and
low-spin states and therefore captures gaps between states to
good accuracy. Variations on the spin-flip approach have
harnessed time-dependent density functional theory,11−17
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Scheme 1. Representative Challenging Cases for Singlet−
Triplet Gap Computations
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coupled-cluster,18−22 algebraic diagrammatic construction,23,24

and restricted active-space25−27 ansatzes to compute such gaps.
While spin flip is a largely successful theory, it cannot reach
quantitative accuracy in all cases, leaving room for new methods
to simulate open-shell species with increased reliability.
To reach higher accuracy, multireference approaches are the

standard tools. For example, methods such as CASSCF28−31

and its dynamically correlated variants32−40 are commonly
used, despite the fact that they suffer from strong dependencies
on active-space choice. Full valence active spaces are needed to
avoid arbitrary active-space selections, but these are computa-
tionally intractable for most chemical systems due to their
associated exponential cost. Alternatives such as projected
Hartree−Fock41,42 and random-phase approximations43−45

have therefore been recently investigated, yielding interesting
lower cost methods with reasonable accuracy. Considering
these factors, no one electronic structure theory has
demonstrated polynomial cost, relative freedom from active-
space choice, and high-accuracy treatment of correlations in
diradicals. Indeed, diradicals and diradicaloids greatly stress
quantum-chemical methods in general.46−51

Near-exact solutions to the electronic Schrödinger equation
offer alternatives that are free from active-space choices but
limited primarily by computational cost. These strategies
estimate the full configuration interaction52−58 (FCI) energy
by correlating all electrons on equal terms. Recently the author
introduced an incremental solution to FCI, denoted iFCI,59,60

which can begin from Hartree−Fock (HF) or Perfect Pairing
(PP)61−64 reference wave functions. By recovering correlation
energy in small, incremental units, close approximations to the
FCI energy are found at much lower cost compared with
conventional FCI solvers. The iFCI computational cost scales
as a polynomial with system size,59 giving it an advantage over
powerful prefactor-reduction strategies such as quantum Monte
Carlo FCI,65−69 density matrix renormalization group,70,71 and
select-CI72−76 approaches, all of which have exponential scaling.
iFCI’s polynomial cost is achieved by treating correlations
between localized orbitals, thus avoiding many-body effects
among numerous spatially overlapping delocalized orbitals.
When the localized orbitals are formed via PP, substantial
amounts of correlation can also be captured at zero-order,
leading to fast, systematic convergence. Motivated by these
promising results,59,60 this article studies the applicability of PP-
iFCI for computing singlet−triplet gaps.
To obtain such gaps, the lowest energy state of each spin

multiplicity is required, preferably from a single simulation. A
potential problem, however, is that the incremental expansion
uses localized orbitals as the basic unit of correlation, and no
one localized orbital pair will necessarily represent the triplet
for many chemical systems. To remedy this issue, concepts
from spin flip will be invoked to produce a starting point for
iFCI. Specifically, orbitals from high-spin PP will form the first
approximation to the wave function. This choice bypasses an
active-space selection, making it more black-box than most
multireference methods. Using this overall strategy, bench-
marks will show that iFCI yields quantitative results (1 kcal/
mol accuracy) for the variety of polyatomic molecules shown in
Scheme 1.

■ THEORY
Incremental Full Configuration Interaction. The iFCI

method using a PP reference function has been shown to reach
high-accuracy singlet ground-state energies.60 The basic idea

will be summarized here to lay foundations for the proposed
method for computing singlet−triplet gaps. The reader is
referred to prior publications for detailed descriptions of
iFCI.59,60

iFCI uses the many-body expansion77−84 to recover
correlation energy in a collection of small units, the sum of
which asymptotically approaches FCI. Specifically, the
correlation energy is expressed as
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The terms of this expansion, ϵX, quantify correlations in n-body
units of interaction. For singlet ground-state iFCI, the n = 1
terms, ϵi, are the correlation energies (beyond the reference)
for each pair of electrons, i, treated independently. At n = 2, ϵij
are the residual correlation energies when two pairs of electrons
(i,j) are correlated in the mean field of the remaining electrons
and so on for higher n-body increments. The correlation
increments, ϵX, are evaluated in a virtual natural orbital basis
that is specific to its n occupied orbitals.59 Each term is
converged to within a threshold, ζ, which limits the number of
correlating virtual orbitals in the increment.
For N electron pairs (and n ≪ N), there are O(Nn)

incremental units, ϵX, such that iFCI requires polynomial effort
for finite n. Fortunately, eq 1 produces size-extensive energies
when the correlation energies, Ec(X), come from a theory that
is also extensive. FCI is one such theory, and therefore any
value of n provides an intrinsically size extensive method. This
property has been suggested by numerous benchmark cases in
prior work, including systems with up to 10 carbon atoms being
treated to high accuracy at n = 3.60

Converging iFCI up to n = 3 or 4 therefore requires solving a
polynomial number of configuration interaction (CI) eigenval-
ue problems. This computational expense becomes quite high
when using a conventional Davidson algorithm.59 To alleviate
this issue, the heat-bath CI (HBCI) solver72 is used to provide
rapid, close estimates of CI energies. HBCI relies on two
parameters that allow an asymptotic reproduction of the exact
CI energy as they are decreased to zero. One parameter
controls the selection of the CI space, which is exactly
diagonalized, and the second controls the perturbation from
this CI solution. By using small cutoffs, small errors are
introduced into iFCI by HBCI, with the benefit of orders-of-
magnitude reduction in computational time.
The success of iFCI also relies on the choice of reference

function, which gives Eref and defines the orbital bodies for the
many-body expansion. In prior work, localized orbitals from a
HF reference were shown to provide a good starting place for
equilibrium geometries with closed-shell character,59 while a
singlet PP wave function was needed for rapid convergence of
open-shell electronic states.60 In the latter case, the bodies of
expansion were localized bonding−antibonding orbital pairs,
each containing two electrons. Neither of these choices is
suitable for computing a variety of triplet states, which may be
intrinsically delocalized beyond localized HF or low-spin PP
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orbitals. To compute triplet states using iFCI, a different set of
orbitals from a new reference will be required.
High-Spin Perfect Pairing Reference. PP uses a

variational procedure to maximize correlation from double
excitations within explicitly paired orbitals (but not between
pairs of pairs). For example, the PP orbitals of butadiene
(Scheme 2) show correlations via nodes in the center of each

local π bond. While this is useful for recovering (some)
correlation in the singlet ground state, the lowest energy triplet
cannot be constructed from two unpaired electrons in any two
PP orbitals. Indeed, a reconfiguration of all four localized π
orbitals would be required to correctly represent the triplet.
The assignment of the triplet state is therefore unnecessarily
complex, and no single electron configuration can be used to
describe it. Starting with singlet PP orbitals in eq 1 will only
result in slow convergence of the triplet with respect to n.
While it is obvious that a better reference must be found for

the triplet, this choice should take into consideration the singlet
as well. Specifically, an optimal reference could specifically
target the electronic configurations that best represent the
singlet and triplet simultaneously. One excellent solution
inspired by spin flip methodsis to use high-spin PP as the
reference. The π and π* orbitals of high-spin, triplet PP for
butadiene resemble their Hartree−Fock counterparts (left side
of Scheme 2), and the σ orbitals retain the localized bonding−
antibonding structure of low-spin PP. For high-lying valence π
orbitals, this amounts to a good description of the triplet via
two unpaired electrons in two orbitals. Effective descriptions of
open- or closed-shell singlets are also available through CI in
the same space, in close analogy to the spin flip procedure.4

Incremental Full Configuration Interaction for Spin
Gaps. With a useful set of reference orbitals available through
high-spin PP, iFCI can be redesigned with a focus on singlet−
triplet gaps. To understand how this will work, consider that
the ϵi terms from eq 1 for each electron pair are computed in
the mean field of the remaining 2(N − 1) electrons. Terms with
i ≠ a, where a is the pair of singly occupied triplet orbitals,
contribute to the total energy but do not affect the energy gap.
Such terms can be avoided, and the focus can instead be on
terms that do influence the gap.
CI singles and doubles (CISD) for the two active electrons

(in the mean field of 2(N − 1) electrons) give a simple
correlated wave function where the lowest singlet and triplet
states can be computed. Correlation beyond this reference via

iFCI entails one-body correlations that involve one electron
pair plus the two active electrons (CISDTQ), two-body terms
that involve two electron pairs plus the active electrons
(CISDTQPH), and so on. In each increment, the total energies
for both spin states are computed. This strategy is diagrammed
in Figure 1, where each CI computation is a complete-active-
space CI (CAS-CI) involving all 2n + 2 active electrons
correlated in a natural orbital virtual space.

The overall scheme deviates from the previous implementa-
tion of iFCI in that the two high-spin PP electrons, and
corresponding orbitals are included in every incremental term
(ϵX). Rather than computing the singlet or the triplet
independently with different reference (pairing) orbitals, the
two electronic states are computed in a single simulation. Their
incremental differences in energy, ϵX(T) − ϵX(S), and total
energies are collected in the process. Because energy gaps
should converge much more quickly than total energies,
significant error cancellation is expected to be built into the
method.
On the basis of the algorithm suggested by Figure 1, it

becomes clear that the procedure is certainly dependent on the
reference orbitals. At high n, this dependence will disappear
because the incremental expansion guarantees such conver-
gence, but low n solutions are of greatest interest. The examples
below will serve to test the generality and reliability of high-spin
PP orbitals for use in iFCI.

■ COMPUTATIONAL DETAILS
iFCI is implemented in C++ in a development version of the
Q-Chem 5.0 software package.85 The double-ζ polarized 6-
31G* basis86 and the polarized triple-ζ cc-pVTZ87 basis were
used as specified in the benchmark examples. Pipek−Mezey
(PM) localization88 was used to initiate the PP procedure of the
coupled-cluster valence bond implementation in Q-Chem.
Orbital pairs from the (orthogonal) natural orbital representa-
tion of PP were semicanonicalized before use in iFCI.
The HBCI solver72 was used to obtain full-valence

benchmarks as well as eigenvalues of the incremental
Hamiltonians. For iFCI, relatively small values of the heat-
bath cutoff parameters were used, ε1 = 200 μ Ha and ε2 = 0.5 μ
Ha, such that HBCI energies are precise. HBCI computations
were initiated by diagonalizing CAS-CI Hamiltonians consisting
of 2n + 2 electrons in 2n + 2 orbitals and targeting either the
lowest singlet or triplet state. When used as a full valence
benchmark, ε1 was sequentially reduced until convergence to
within 1mHa (see the Supporting Information). Further details
of this procedure are described in ref 72.

Scheme 2. Comparison of Orbital Types and Electronic
States in Butadiene

Figure 1. Singlet−triplet gap computations via iFCI.
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The summation natural orbital procedure of ref 59 generated
the natural virtual orbitals for each increment. The convergence
metric ζ was chosen to be 10−5.5 Ha, unless otherwise noted.
These values provide good convergence of the total energies
while minimizing expense for larger system sizes (see
convergence test in the subsequent section).
Four-center, two-electron integrals were computed using the

resolution of the identity (RI) approximation.89,90 All
simulations used the RIMP2-cc-pVTZ auxiliary basis set for
this purpose. Conventional Fock matrices account for frozen
core contributions. Point-group symmetry is not invoked.
Geometries for most molecules were obtained from ref 45,
while ethylene, butadiene, and hexatriene geometries were
optimized at the MP2/cc-pVQZ level.91

■ RESULTS

A variety of test cases were collected to evaluate iFCI for
singlet−triplet gaps. The first several were diradicals and
diradicaloids, including carbenes, trimethylenemethane, cyclo-
butadiene, and benzynes, which are commonly used to test ab
initio methods.45 Ethylene, butadiene, and hexatriene were
added to this set to represent species with delocalized triplets in
conjugated π systems.
Because the carbenes are small, HBCI72 can correlate all

valence electrons at once and provide total energies within 1
mHa of FCI. This excellent level of convergence for HBCI is
verified in the Supporting Information to show these numbers
are quantitative benchmarks. HBCI is similarly applicable to
C3H6 but cannot be easily applied to the larger systems due its
exponential scaling.
Carbene Analogues. Four triatomic analogues of carbenes,

CH2, NH2
+, SiH2, and PH2

+, were considered as the first
benchmark set. Carbenes have strong correlations between the
σ and π valence orbitals, providing electronic configurations of
σ2π0, σ1π1, and σ0π2 as especially vital. The complexity of these
configurations leads to qualitatively different ordering of spin
states depending on the carbene, giving two singlet and two
triplet ground states. On top of the strong correlation, dynamic
correlation must be included to reach high accuracy gaps. For
the carbenesand all examples in this articleall valence
electrons are correlated in iFCI. Having only six valence
electrons, HBCI provides near-exact energies (within the basis
set) for comparison. Similarly, n = 2 consists of just one
incremental term that correlates all valence electrons, so n = 2
iFCI will closely replicate HBCI results.
Figure 2 shows the convergence progress for methylene as a

function of the threshold, ζ, that controls the natural orbital
cutoffs used in the increment computations. Using ζ = 10−7.5

Ha as the benchmark limit, errors in total energies are small at
all chosen thresholds, although three of the four increase from ζ
= 10−3.5 to ζ = 10−4.5. This effect is likely due to serendipitous
error cancellation at loose convergence (the same property is
not observed for the other three carbenes). Regardless, the total
energies are converged to 0.1 mHa or better for ζ ≤ 10−4.5. For
all values of ζ, the gap is also converged to within 0.1 mHa and
within 1 μHa for ζ ≤ 10−5.5. While somewhat slower
convergence is expected for larger polyatomics that follow,
because they have more virtual orbitals, ζ = 10−5.5 Ha was
chosen as a reasonable threshold for general use.
In Table 1, iFCI results for the carbenes at ζ = 10−5.5 are

compared with HBCI and experiment. The HBCI and iFCI at n
= 1 agree to within 2.0 kcal/mol, indicating that even the lowest
level of iFCI expansion can produce usefully accurate gaps. iFCI
at n = 2 and HBCI with the triple-ζ basis agree with experiment
to within 1 kcal/mol in all four cases, with the double-ζ basis
being substantially less accurate. Because these results are
essentially exact within the basis, the cc-pVTZ basis set is
therefore sufficient to reproduce accurate gaps. In the larger
systems that follow, the 6-31G* and cc-pVTZ basis sets will
continue to be used with these convergence metrics in mind.

Trimethylenemethane and Cyclobutadiene. Trimethy-
lenemethane (TMM) and cyclobutadiene have four strongly
correlated π electrons and significant dynamic correlations with
the occupied σ orbitals. In TMM, the lowest energy singlet
state (B1) has four H in the plane of the carbon atoms, and the
remaining two H are perpendicular to the plane. There also
exists another singlet state (A1), which like the lowest triplet
(A2), has all atoms within the plane. The resulting electronic
structures are therefore considerably different due to one
carbon p orbital that either aligns or is orthogonal to the other
three. Cyclobutadiene provides a similarly difficult correlation
structure, having two degenerate π orbitals that result in an
open-shell singlet ground state, in violation of Hund’s rules. In
total, 22 valence electrons must be correlated for TMM and 20
for cyclobutadiene. With the 6-31G* basis, TMM has 68
valence basis functions and cyclobutadiene has 64, while cc-
pVTZ provides 200 and 172, respectively.
Benchmark values for the vertical transition in cyclo-

butadiene are not available via experiment. Multireference
simulations are therefore quoted from the literature for
comparison to iFCI (Table 2), but because this reference
used a double-ζ basis and a minimal active space (CAS(2,2)),98

its quantitative accuracy is limited.
The planar and nonplanar adiabatic gaps of TMM and the

vertical gap of D4h symmetric cyclobutadiene are shown in
Table 2. The iFCI gap at n = 2 in TMM compares favorably to
the reference energies for both basis sets. At n = 1 for the cc-
pVTZ basis, iFCI gives a B1−A2 gap that is 0.6 kcal/mol away
from the n = 2 gap, while the n = 1 value is less converged for
the A1−A2 gap, being 2.2 kcal/mol away. Nonetheless, the n = 2
values are within 1 kcal/mol of the n = 3 values, indicating rapid
convergence with respect to n. In cyclobutadiene, the correct
ground state is recovered at all n > 1, even though the reference
energy (i.e., n = 0) predicts a triplet ground state favored by 6.3
kcal/mol. This result suggests that a large amount of correlation
must be recovered to treat cyclobutadiene with good accuracy.
Furthermore, this suggests that even when the starting guess
has poor quantitative accuracy, iFCI does recover the correct
solution with increasing n, which is a useful property. This
property is confirmed by n = 3 computations in the 6-31G*

Figure 2. Convergence of iFCI total energies and singlet−triplet gap
for methylene in the cc-pVTZ basis with respect to ζ.
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basis, where the corrections from n = 2 to n = 3 are <1 kcal/
mol.
o-, m-, and p-Benzynes. When two hydrogen atoms are

removed from benzene, benzynes are formed.100 These species
have distinct structures in their singlet and triplet states,
changing degrees of radical σ overlap depending on the isomer,
and enough electrons (28 valence) to challenge highly
correlated multireference theories. Because geometries for the
singlet and triplet state differ substantially from one another,44

computation of accurate adiabatic gaps is additionally difficult.
Table 3 compares iFCI singlet−triplet gaps in ortho-, meta-,

and para-benzyne to experiment. All iFCI simulations at n > 0
predict the correct ground state, and the cc-pVTZ results at n =
2 agree closely with experiment. This occurs even though the n
= 0 reference values are poor quality and only capture the
qualitative trends in singlet−triplet gap for the three isomers. In
addition, the n = 1 and 2 values differ significantly from one
another, suggesting that many-body correlations substantially
affect the radical pair. In summary, the benzynes are found to
be substantially difficult problems for a correlated method: The
active-space results (n = 0) are poor, including pairwise
correlations (active-space plus all valence PP pairs at n = 1)
substantially corrects this, and including up to hextuple
excitations (i.e., CISDTQPH at n = 2) and a triple-ζ basis is
required to reach quantitative accuracy. iFCI, however,
naturally captures this correlation progression to accurately
reproduce the experimental series of singlet−triplet gaps.
Isolated Diradicals. In the insulating analogue of the

benzynes, weakly coupled diradicals emerge when two H atoms
are abstracted from distant carbon atoms in alkanes. Three such
diradicals are shown in Scheme 3, with varying electronic
environments and degrees of separation between the radical

electrons. While such radicals appear somewhat trivial
compared with other cases considered herein, these three
molecules have a unique radical electronic structurenear
degeneracythat represents moieties vital to combustion
chemistry.102

Table 4 shows the results from iFCI for n = 1 and n = 2 in
the 6-31G* and cc-pVTZ basis sets. Because of the insulating
character of the alkanes, the gaps are small and not highly
sensitive to basis set. For the same reason, n = 1 provides a
close approximation to the n = 2 results, being within 0.5 kcal/
mol for C3H6 and 0.1 kcal/mol for the C7H14 structures. For
C3H6, n = 3 provided a correction of 0.04 kcal/mol (to give
1.93 kcal/mol) compared with n = 2, suggesting n = 2 is well
converged. Because C3H6 has only 18 valence electrons, HBCI
results in the double-ζ basis are available to substantiate this
convergence, and HBCI closely agrees (within 0.1 kcal/mol)
with n ≥ 2 iFCI. For the larger C7H14 diradicals, n = 2
computations were not performed at the cc-pVTZ level due to
their large size (42 valence electrons in 399 orbitals) and sub-
0.1 kcal/mol convergence with respect to n in the 6-31G* basis.
The iFCI results at n = 1, however, agree well with the best
available electronic structure benchmarks, which also were
performed in polarized triple-ζ basis sets.

Shorter Polyenes. The polyene series, C2nH2n+2, is a
prototypical set of conjugated molecules with delocalized π

Table 1. Carbene Analogue Adiabatic Singlet−Triplet Gaps in kcal/mola

6-31G* cc-pVTZ

n = 1 n = 2 HBCI n = 1 n = 2 HBCI experimentb

CH2 16.1 15.1 15.0 11.7 10.0 9.9 9.0
NH2

+ 34.6 32.9 32.8 31.3 29.3 29.3 29.0
SiH2 −16.9 −16.7 −16.8 −20.2 −20.1 −20.3 −21.0
PH2

+ −14.3 −13.6 −13.8 −17.6 −17.1 −17.4 −17.0
aGeometries from ref 45. bExperimental gaps for CH2,

92,93 NH2
+,94 SiH2,

95,96 and PH2
+.97

Table 2. Singlet−Triplet Gaps for Trimethylenemethane (Adiabatic) and Cyclobutadiene (Vertical) in kcal/mol

6-31G* cc-pVTZ

n = 1 n = 2 n = 3 n = 1 n = 2 best othera experimentb

TMM
B1 14.7 16.0 15.5 16.9 16.3 16.4
A1 17.1 20.1 19.5 17.0 19.2 19.1 18.2

cyclobutadiene −9.7 −5.9 −5.0 −7.1 −4.2 −8.1
aTMM results at the MCQDPT2(10,10)/cc-pVTZ level from ref 4. Cyclobutadiene results at the CASSCF-MkCCSD/cc-pVDZ level from ref 98.
bExperiment from ref 99 with zero-point energy removed based on ref 4.

Table 3. Benzyne Adiabatic Singlet-Triplet Gaps in kcal/mol

6-31G* cc-pVTZ

n = 0 n = 1 n = 2 n = 0 n = 1 n = 2 experimenta

ortho −21.6 −41.1 −31.5 −23.0 −42.6 −38.6 −37.5
meta −4.2 −15.9 −19.0 −5.6 −21.1 −21.1 −21.0
para 0.2 −1.0 −4.1 0.0 −0.8 −4.1 −3.8

aExperimental results from ref 101.

Scheme 3. Isolated Diradicals under Consideration
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networks.104,105 The first three species in this series, ethylene,
trans-butadiene, and all-trans-hexatriene, have closed-shell
singlet ground states, and the triplet can be considered an
excited state. These states have dominated by single-reference
character,106−109 so coupled-cluster singles and doubles with
perturbative triples (CCSD(T))110 is an accurate theory for
computing the gap. For benchmarking iFCI, the canonical
CCSD(T) method is therefore available along with exper-
imental results. Because the latter are experimental band
maxima, comparisons with vertical excitation energies should
not be quantitative.111

Table 5 shows iFCI gaps for the three polyenes compared
with CCSD(T) and experiment. For all three species and all

basis sets, n = 2 iFCI agrees with CCSD(T) to within 0.1 eV.
iFCI at n = 1 is similarly accurate for ethylene and butadiene
but drifts 0.3 to 0.4 eV for hexatriene. This error at low n can be
understood by noting the n = 0 reference values deteriorate as
the polyenes grow in size. Whereas ethylene has an excellent n
= 0 gap that is within 0.2 eV of the benchmarks, hexatriene at n
= 0 is off by 1.4 eV. This observation shows the quantitative
accuracy of the reference is important at low n, as n = 1 cannot
fully recover from this large error. Fortunately, the n = 2
corrections remedy the issue, and iFCI consistently returns
high-quality spin gaps at this level. At n = 3 in the 6-31G* basis,
smaller corrections of 0.1, 0.5, and 1.5 mHa for ethylene,
butadiene, and hexatriene, respectively, indicate that n = 3 is
only vital for high accuracy at hexatriene. Whether higher n will
be required for conjugated networks with greater degrees of
delocalization is unclear, as six carbon atoms is roughly the limit
where n = 3 corrections can be readily applied.

■ DISCUSSION
PP-iFCI was previously shown60 to be effective at recovering
singlet ground-state energies for closed- and open-shell wave
functions. PP-iFCI was successful due to PP’s good behavior in
bond-breaking situations and its smoothly varying orbitals, such
that qualitatively correct reference energy profiles were

produced for multiple bond dissociation problems. This
strategy worked well because broken bonds are localized, that
is, between the two atoms involved in the bond, and PP readily
captures this situation in its singlet ground state. By adding
significant correlation via the n-body expansion to this PP
reference, PP-iFCI consistently led to near-FCI-quality energies
in several test examples.
In the present advance, a new set of orbitals was required to

handle triplet states. Specifically, high-spin PP was converged to
its lowest energy triplet, which creates the requisite high-spin
orbitals to demarcate the gap. This adds black-box character to
the method compared with most active-space methods, as HS-
PP-iFCI does not require an active-space selection. Indeed,
because all CAS-CI spaces involving 2n + 2 electrons are
involved in the n-body expansion of iFCI, all such active spaces
contribute to the total correlation energies. Compared with
standard multireference methods, this unusual property allows
systematic convergence of iFCI with increasing n and relative
freedom from active space bias. This property led to
reproduction of experimental spin gaps and high-level
theoretical results to within ∼1 kcal/mol (0.04 eV) for all
cases considered.
It should be noted, however, that PP does not trivially

converge to the high-spin state of interest, as it is well-known
that multiple solutions exist. This appears to be the primary
limitation of HS-PP-iFCI, in that the reference pairing orbitals
must be (at least) qualitatively correct. Despite this cautionary
note, a correct restricted open-shell HF initial guess for PP
remedied this dependence for all examples in this article.
Therefore, at least for the species in Scheme 1, the PP reference
appears sufficient for iFCI to quickly converge upon high-
accuracy singlet−triplet gaps. Further study will be needed to
determine the PP reference’s applicability to molecules with
long conjugation lengths.119−121

Despite being a polynomial scaling method, iFCI relies on
the greatly reduced costs of HBCI72 to determine the many
incremental energies at n > 1. This advance has been key to the
continued progress of the iFCI method,59,60 as future
improvements in fast FCI solvers can further improve iFCI’s
efficiency.

■ CONCLUSIONS

The method of increments is herein shown to be useful for
computing gaps between spin states to high accuracy by
approaching FCI-level correlation energies. Whenever iFCI
converges at low n, the method maintains tractable polynomial
scaling with growing system size. Fortunately, the zero-order
reference state constructed from PP allows rapid convergence
with respect to n of the n-body expansion, making iFCI
applicable to computing singlet−triplet gaps for polyatomics
that are far from the reach of FCI. This advance therefore
greatly expands the realm of systems where near-exact solutions
of the electronic Schrödinger equation are available. Ongoing

Table 4. Vertical Singlet−Triplet Gaps for Isolated Diradicals in kcal/mol

6-31G* cc-pVTZ

n = 1 n = 2 HBCI n = 1 n = 2 best othera

C3H6 1.48 1.97 1.88 1.39 1.88 1.8
branched C7H14 −0.01 0.07 0.02 0.0
linear C7H14 −0.20 −0.22 −0.21 −0.2

aCASMP2(8,8)/6-311++G(2d,2p) results for C3H6 from ref 103 EOM-SF-CCSD(dT)/6-311G(d) results from ref 16.

Table 5. Polyene Vertical Triplet−Singlet Gaps in eV

6-31G*

n = 0 n = 1 n = 2 n = 3 CCSD(T)

ethylene 4.51 4.67 4.67 4.66 4.65
butadiene 2.23 3.53 3.46 3.45 3.46
hexatriene 1.36 2.43 2.86 2.81 2.80

cc-pVTZ

n = 0 n = 1 n = 2 CCSD(T) experimenta

ethylene 4.51 4.66 4.64 4.63 4.3 to 4.6
butadiene 2.31 3.52 3.44 3.45 3.22
hexatriene 1.46 2.49 2.84 2.80 2.61

aExperimental band maxima for ethylene,112−116 butadiene,117 and
hexatriene.118
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studies will determine whether similar strategies are applicable
to multistate solutions where the electronic states are not
orthogonal due to spin or spatial symmetry.
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