Main group metal–ligand cooperation of N-heterocyclic germylene: an efficient catalyst for hydroboration of carbonyl compounds

N-heterocyclic ylide-like germylene effectively promotes the hydroboration of aldehydes and ketones under mild conditions with broad substrate tolerance, operational simplicity of procedure and excellent yields. A key intermediate in this catalytic system featuring a bicyclo[2,2,2]octane-like core has been successfully isolated and characterized, suggesting a new type of mechanism that involves the activation mode that mimics that of transition metal catalysts.

Reactivity of Germylene toward Phosphorus-Containing Compounds: Nucleophilic Addition and Tautomerism

A series of phosphorus-substituted germanium(II) complexes, L1GeR [L1 = CH{(CMe)(2,6-iPr2C6H3N)}2; 2, R = PPh2; 4, R = OPPh2; 5a, R = OP(O)Ph2; 5b, R = OP(O) (OnBu)2; 6a, R = OP(S)Ph2; 6b, R = OP(S)(OEt)2], were synthesized through the direct activation of various organic phosphorus compounds by N-heterocyclic ylide-like germylene 1.