Inorg. Chem.

Adaptive Aromaticity in 18e Metallapentalenes

Complexes with aromaticity in both the lowest singlet state (S0) and the lowest triplet state (T1) (denoted as adaptive aromaticity) are rare because according to Hückel’s and Baird’s rules, a species could be aromatic in either the S0 or T1 state in most cases. Thus, it is particularly challenging to design species with adaptive aromaticity. Previous reports on adaptive aromaticity were mainly focused on 16e metallapentalenes.

Stabilizing a 20-Electron Metallaazulyne by Aromaticity

The 18-electron rule states that metal complexes with 18 valence electron metal centers are thermodynamically stable because nine valence orbitals of transition metals including one s orbital, three p orbitals, and five d orbitals can collectively accommodate 18 electrons, achieving the same electron configuration as the noble gas in the period. Thus, 20-electron compounds are extremely rare due to a violation of such a rule.

Predicting Dinitrogen Activation by Five-Electron Boron-Centered Radicals

Due to the high bond dissociation energy (945 kJ mol–1) and the large highest occupied molecular orbital–lowest unoccupied molecular orbital (HOMO–LUMO) gap (10.8 eV), dinitrogen activation under mild conditions is extremely challenging. On the other hand, the conventional Haber–Bosch ammonia synthesis under harsh conditions consumes more than 1% of the world’s annual energy supply. Thus, it is important and urgent to develop an alternative approach for dinitrogen activation under mild conditions.

Systematic Design of a Frustrated Lewis Pair Containing Methyleneborane and Carbene for Dinitrogen Activation

Activation of atmospherically abundant dinitrogen (N2) by metal-free species under mild reaction conditions has been one of the most challenging areas in chemistry for decades. Very recent but limited progress in N2 activation by boron species, including two-coordinated borylene and methyleneborane and three-coordinated borole and borane, has been made toward metal-free N2 activation.

Chemoselectivity for B–O and B–H Bond Cleavage by Pincer-Type Phosphorus Compounds: Theoretical and Experimental Studies

Selective cleavage of the B–O bond or B–H bond in HBpin can be achieved by adjusting the pincer ligand of a phosphorus(III) compound guided by a combination of theoretical prediction and experimental verification. Theoretical calculations reveal that a pincer-type phosphorus compound with an [ONO]3– ligand reacts with HBpin, leading to cleavage of the stronger B–O bonds (ΔG°⧧ = 23.2 kcal mol–1) rather than the weaker B–H bond (ΔG°⧧ = 26.4 kcal mol–1).

Screening Borane Species for Dinitrogen Activation

Activation of the strongest triplet bond in molecular nitrogen (N2) under mild conditions is particularly challenging. Recently, its fixation and reduction were achieved by highly reactive dicoordinated borylene species at ambient conditions, ripping the limits of harsh reaction conditions by metallic species. Less reactive species with a facile preparation could be desirable for next-generation N2 activation. Now density functional theory calculations reveal that tricoordinated boranes could be a potential candidate of N2 activation/functionalization.

Reaction Mechanisms on [3 + 2] Cycloaddition of Azides with Metal Carbyne Complexes: Significant Effects of Aromaticity, Substituent, and Metal Center

Density functional theory calculations were used to investigate the reaction mechanisms on [3 + 2] cycloaddition reactions of azides with metal carbyne complexes. Our results reveal that the formation of a 1,4-metallatriazole regioisomer is a kinetically favorable process in comparison with the formation of 1,5-metallatriazole. Aromaticity plays an important role in stabilizing the products in these reactions. Further analyses show that the electron-donating ligand on metal centers or the electron-withdrawing group on the azide could accelerate the [3 + 2] cycloaddition reaction.

Formation of Iridium(III) Complexes via Selective Activation of the C–H and N–H Bonds of a Dipyridylpyrrole Ligand

Treatment of [Ir(PPh3)3Cl] with 2-[5-(pyridin-2-yl)-1H-pyrrol-2-yl]pyridine (Hdpp) in refluxing toluene affords an unexpected pyrrole-metalated iridium(III) hydride complex, [Ir(K2C,N-dpp)(H)(Cl)(PPh3)2] (1), via Cpyrrole–H activation, while the presence of the base KOtBu as the deprotonation reagent produces a pyridine-metalated iridium(III) hydride complex, [Ir(K3C,N,N-dpp)(H)(PPh3)2] (2), via Cpyridine–H activation.

Reactivity of Germylene toward Phosphorus-Containing Compounds: Nucleophilic Addition and Tautomerism

A series of phosphorus-substituted germanium(II) complexes, L1GeR [L1 = CH{(CMe)(2,6-iPr2C6H3N)}2; 2, R = PPh2; 4, R = OPPh2; 5a, R = OP(O)Ph2; 5b, R = OP(O) (OnBu)2; 6a, R = OP(S)Ph2; 6b, R = OP(S)(OEt)2], were synthesized through the direct activation of various organic phosphorus compounds by N-heterocyclic ylide-like germylene 1.

Facile η5–η1 Ring Slippage of the Cycloolefin Ligands in Osmocene and Bis(η5-indenyl)ruthenium(II)

η5–η1 ring slippage of [OsCp2] (Cp = η5-C5H5) and [Ru(η5-ind)2] (ind = indenyl) resulting from reaction with the ruthenium(VI) nitride [Ru(LOEt)(N)Cl2] (1; LOEt– = [CoCp{P(O)(OEt)2}3]−) is reported. The treatment of [OsCp2] or [Ru(η5-ind)2] with 1 resulted in η5-η1 ring slippage of the cycloolefin ligands and formation of the trinuclear nitrido complexes [Cp(η1-C5H5)Os(NRuLOEtCl2)2] (2) or [(η5-ind)(η1-ind)Ru(NRuLOEtCl2)2] (3).

Pages