J. Phys. Chem. A

Concerted or Stepwise Mechanism? New Insight into the Water-Mediated Neutral Hydrolysis of Carbonyl Sulfide

The water-mediated neutral hydrolysis mechanism of carbonyl sulfide (OCS) has been re-examined using the hybrid supramolecule/continuum models with n = 2–8 explicit water cluster at the level of MP2(fc)(CPCM)/6-311++G(d,p)//MP2(fc)(CPCM) /6-31+G(d). Present calculations indicate that the potential energy surface in water solution is different from the one in the gas-phase, and only stepwise mechanism is observed in aqueous solution, i.e., monothiocarbonic acid (H2CO2S) is formed via monothiocarbonate (OCSOH–, MTC) and its counterion, protonated water cluster, (H2O)nH3O+.

G2(+)M Study on N-Alkylamino Cation Affinities of Neutral Main-Group Element Hydrides: Trends Across the Periodic Table

We have made an extensive theoretical exploration of gas-phase N-alkylamino cation affinities (NAAMCA), including amino cation affinities (AMCA) and N-dimethylamino cation affinities (NDMAMCA), of neutral main-group element hydrides of groups 15–17 and periods 2–4 in the periodic table by using the G2(+)M method. Some similarities and differences are found between NAAMCA and the corresponding alkyl cation affinities (ACA) of HnX.