hyperconjugative aromaticity

Tuning the hyperconjugative aromaticity in Au(III)-substituted indoliums

As a fundamental concept in chemistry, aromaticity has been extended from traditional organics to organometallics. Similarly, hyperconjugative aromaticity (HCA) has also been developed from main group to transition metal systems through the hyperconjugation of the substituents. However, it remains unclear that how the oxidation state of transition metal in the substituents affects the HCA. Herein, we demonstrate via density functional theory calculations that HCA could disappear in indoliums when the Au(I) substituents are changed to the Au(III) ones.

Probing hyperconjugative aromaticity in 2H-pyrrolium and cyclopentadiene containing Group 9 transition metal substituent: Bridged carbonyl ligands can enhance aromaticity

Aromaticity and hyperconjugation are two fundamental concepts in organic chemistry. By combination of the two concepts together, the resulting hyperconjugative aromaticity has attracted considerable attention from both theoretical and computational chemists. However, previous studies are mainly focused on the main group chemistry. For the hyperconjugative aromaticity in the transition metal chemistry, the studies are limited to groups 10 and 11.

Hyperconjugative aromaticity and protodeauration reactivity of polyaurated indoliums

Aromaticity generally describes a cyclic structure composed of sp2-hybridized carbon or hetero atoms with remarkable stability and unique reactivity. The doping of even one sp3-hybridized atom often damages the aromaticity due to the interrupted electron conjugation. Here we demonstrate the occurrence of an extended hyperconjugative aromaticity (EHA) in a metalated indole ring which contains two gem-diaurated tetrahedral carbon atoms. The EHA-involved penta-aurated indolium shows extended electron conjugation because of dual hyperconjugation.