cross-coupling

Cobalt-catalyzed migratory carbon-carbon cross-coupling of borabicyclo[3.3.1]nonane (9-BBN) borates

In most Suzuki-Miyaura carbon-carbon cross-coupling reactions, the borabicyclo[3.3.1]nonane scaffold (9-BBN) only serves as an auxiliary facilitating the transmetalation step and thus is transformed into by-products. There are rare examples where the 9-BBN derivatives serve as the potentially diverse C8 building blocks in cross-coupling reactions. Herein, we report a cobalt-catalyzed migratory carbon-carbon cross-coupling reaction of the in situ formed 9-BBN ate complexes to afford diverse aryl- and alkyl-functionalized cyclooctenes.

Probing the Origin of Higher Efficiency of Terphenyl Phosphine over the Biaryl Framework in Pd-catalyzed C-N Coupling: A Combined DFT and Machine Learning Study

The Pd-catalyzed Buchwald–Hartwig coupling reaction is important in the construction of the C-N bond due to various applications in organic synthesis. Quantum chemical calculations are widely used in understanding reaction mechanisms whereas the machine learning method is extremely popular in recognizing the relationships of data. Here, we combine density functional theory calculations with the support vector regression method to probe the origin of the higher efficiency of terphenyl phosphine ligand over the biaryl counterpart in the Buchwald–Hartwig C-N coupling reaction.

Mechanism of Nickel-Catalyzed Selective C–N Bond Activation in Suzuki-Miyaura Cross-Coupling of Amides: A Theoretical Investigation

In textbooks, the low reactivity of amides is attributed to the strong resonance stability. However, Garg and co-workers recently reported the Ni-catalyzed activation of robust amide C–N bonds, leading to conversions of amides into esters, ketones, and other amides with high selectivity. Among them, the Ni-catalyzed Suzuki-Miyaura coupling (SMC) of N-benzyl-N-tert-butoxycarbonyl (N-Bn-N-Boc) amides with pinacolatoboronate (PhBpin) was performed in the presence of K3PO4 and water. Water significantly enhanced the reaction.

Mechanistic Insight into the Nickel-Catalyzed Cross-Coupling of Aryl Phosphates with Arylboronic Acids: Potassium Phosphate is Not a Spectator Base but is Involved in the Transmetalation Step in the Suzuki–Miyaura Reaction

Spectator or actor? Density functional theory calculations were performed to examine the role of the base in the nickel-catalyzed cross-coupling of aryl phosphates with arylboronic acids. Potassium phosphate was found to not act as a spectator base but was involved in the transmetalation step, as shown by a lower barrier than that of a base-free process, owing to the activation of the carbonboron bond by the base. Further experimental observations support the theoretical findings.