dinitrogen activation

Predicting Dinitrogen Coupling with a Series of Small Molecules Catalyzed by a Pincer Complex

Due to consumption of more than 2% of the world's annual energy supply by Haber–Bosch process and the strongest triple bond (N≡N) in nature, directly coupling N 2 with small molecules is particularly important and challenging, let alone in a catalytic fashion. Here we first demonstrate that a NNN-type pincer phosphorus complex could act as a catalyst to couple dinitrogen with a series of small molecules including carbon dioxide, formaldehyde, N-ethylidenemethylamine, and acetonitrile in the presence of diborane(4) under a mild condition by theoretical calculations.

Predicting Dinitrogen Activation via Transition Metal Involved [4 + 2] Cycloaddition Reaction

As the strongest triple bond in nature, the N≡N triple bond activation has always been a challenging project in chemistry. On the other hand, since the award of the Nobel Prize in Chemistry in 1950, Diels‐Alder reaction has served as a powerful and widely applied tool in the synthesis of natural products and new materials. However, the application of Diels‐Alder reaction to dinitrogen activation remains less developed.

Systematic Design of a Frustrated Lewis Pair Containing Methyleneborane and Carbene for Dinitrogen Activation

Activation of atmospherically abundant dinitrogen (N2) by metal-free species under mild reaction conditions has been one of the most challenging areas in chemistry for decades. Very recent but limited progress in N2 activation by boron species, including two-coordinated borylene and methyleneborane and three-coordinated borole and borane, has been made toward metal-free N2 activation.

Facile Dinitrogen and Dioxygen Cleavage by a Uranium(III) Complex: Cooperativity Between the Non‐innocent Ligand and the Uranium Center

Activation of dinitrogen (N2, 78%) and dioxygen (O2, 21%) has fascinated chemists and biochemists for decades. The industrial conversion of N2 to ammonia requires extremely high temperatures and pressure. Here we report the first example of N2 and O2 cleavage by a uranium complex, [N(CH2CH2NPiPr2)3U]2(TMEDA), under ambient conditions without an external reducing agent. The N2 triple bond breaking implies a U(III)-P(III) six-electron reduction. The hydrolysis of the N2 reduction product allows the formation of ammonia or nitrogen-containing organic compound.

Screening Borane Species for Dinitrogen Activation

Activation of the strongest triplet bond in molecular nitrogen (N2) under mild conditions is particularly challenging. Recently, its fixation and reduction were achieved by highly reactive dicoordinated borylene species at ambient conditions, ripping the limits of harsh reaction conditions by metallic species. Less reactive species with a facile preparation could be desirable for next-generation N2 activation. Now density functional theory calculations reveal that tricoordinated boranes could be a potential candidate of N2 activation/functionalization.

Dinitrogen Activation by Tricoordinated Boron Species: A Systematic Design

Molecular nitrogen (N2), an abundant component of the atmosphere, is appealing for industrial value‐added products. However, its intrinsic inertness limits its activation to mainly metallic species. Environmental concerns and harsh reaction conditions have resulted in a demand for alternate nonmetallic and nontoxic routes to activate and functionalize N2 at ambient conditions. Comprehensive density functional theory (DFT) calculations are performed on N2 activation by boron species, specifically for the experimentally more accessible tricoordinated boron compounds.

Rational Design of a Carbon–Boron Frustrated Lewis Pair for Metal‐free Dinitrogen Activation

Molecular nitrogen (N2) is abundant in the atmosphere and nitrogen, found in many biomolecules, is an essential element of life. The Haber–Bosch process, developed over 100 years ago, requires relatively harsh conditions to activate N2 on the iron surface and generate ammonia for use as fertilizer or to produce other chemicals, leading to consumption of more than 2% of the world’s annual energy supply. Thus, developing approaches for N2 activation under mild conditions is particularly important and urgent.