C-F bond activation

Mechanistic Insight into the Ni-Catalyzed Kumada Cross-Coupling: Alkylmagnesium Halide Promotes C–F Bond Activation and Electron-Deficient Metal Center Slows Down β-H Elimination

The Ni-catalyzed Kumada–Tamao–Corriu (KTC) cross-coupling between aryl fluorides and alkyl Grignard reagents has been used to achieve a highly selective Csp2–Csp3 bond construction via the carbon–fluorine (C–F) bond activation. However, the detailed mechanism of this groundbreaking KTC reaction remains unclear. Herein, we perform a series of analyses by density functional theory (DFT) calculations in order to understand the reaction mechanisms for the selective activation of a highly inert C–F bond by Ni catalysts with bidentate phosphorus ligands.

Aromaticity‐promoted C−F Bond Activation in Rhodium Complex: A Facile Tautomerization

Fluorine is the most electronegative element in the periodic table. Thus, activation of the carbon–fluorine (C−F) bond, the strongest single bond to carbon, has attracted considerable interest from both experimentalists and theoreticians. In comparison with numerous approaches to activate C−F bonds, the aromaticity‐promoted method is less developed. Herein, we demonstrate that the C−F bond activation could be achieved by a facile tautomerization, benefitting from aromaticity, which can stabilize both the transition states and products.