Synthesis and Reactivity of an Anti-van’t Hoff/Le Bel Compound with a Planar Tetracoordinate Silicon(II) Atom

For a long time, planar tetracoordinate carbon (ptC) represented an exotic coordination mode in organic and organometallic chemistry, but it is now a useful synthetic building block. In contrast, realization of planar tetracoordinate silicon (ptSi), a heavier analogue of ptC, is still challenging. Herein we report the successful synthesis and unusual reactivity of the first ptSi species of divalent silicon present in 3, supported by the chelating bis(N-heterocyclic silylene)bipyridine ligand, 2,2′-{[(4-tBuPh)C(NtBu)]2SiNMe}2(C5N)2, 1].

Theoretical Study on the Stability and Aromaticity of Metallasilapentalynes

Antiaromatic compounds and small cyclic alkynes or carbynes are both challenging for synthetic chemists because of the destabilization caused by their antiaromaticity and highly distorted triple bonds, respectively. These dual destabilizations could be the reason why pentalyne (I), a highly antiaromatic and extremely strained cyclic alkyne, has never been synthesized.

Silicon-Containing Formal 4 pi-Electron Four-Membered Ring Systems: Antiaromatic, Aromatic, or Nonaromatic?

Density functional theory calculations (B3LYP) have been carried out to investigate the 4π-electron systems of 2,4-disila-1,3-diphosphacyclobutadiene (compound 1) and the tetrasilacyclobutadiene dication (compound 2). The calculated nucleus-independent chemical shift (NICS) values for these two compounds are negative, which indicates that the core rings of compounds 1 and 2 have a certain amount of aromaticity.