transition metal

Unconventional Aromaticity in Organometallics: The Power of Transition Metals

Aromaticity, one of the most fundamental concepts in chemistry, has attracted considerable attention from both theoreticians and experimentalists. Much effort on aromaticity in organometallics has been devoted to metallabenzene and derivatives. In comparison, aromaticity in other organometallics is less developed. This Account describes how our group has performed quantum chemical calculations to examine aromaticity in recently synthesized novel organometallic complexes.

Probing the Strongest Aromatic Cyclopentadiene Ring by Hyperconjugation

Hyperconjugation, an interaction of electrons in a σ orbital or lone pair with an adjacent π or even σ antibonding orbital, can have a strong effect on aromaticity. However, most work on hyperconjugative aromaticity has been limited to main-group substituents. Here, we report a thorough density functional theory study to evaluate the aromaticity in various cyclopentadienes that contain both main-group and transition-metal substituents.

Unexpected higher stabilisation of two classical antiaromatic frameworks with a ruthenium fragment compared to the osmium counterpart: origin probed by DFT calculations

Density functional theory (DFT) calculations were carried out to investigate the stability and aromaticity of metallapentalocyclobutadienes. The results reveal unexpected higher stabilisation achieved with a 3d ruthenium fragment compared to the 4d osmium counterpart. Moreover, direct 1–3 metal–carbon bonding in the metallabutadiene unit of these two complexes is negligible.

http://pubs.rsc.org/en/content/articlelanding/2015/cc/c5cc08291a#!divAbstract