Ruthenium

A theoretical study on the mechanism of ruthenium(II)-catalyzed phosphoryl-directed ortho-selective C–H bond activations: the phosphoryl hydroxy group triggered Ru(II)/Ru(0) catalytic cycle

Using density functional theory (DFT) calculations, the present study explores the mechanisms of two ruthenium(II)-catalyzed phosphoryl-directed ortho-selective C–H bond activation reactions. Depending on the nature of the phosphoryl groups, namely R2P(O) versus RP(O)OH, two different products could be selectively synthesized. For R2P(O), the overall catalytic cycle includes three basic steps: C–H bond activation, alkyne insertion, and protonation. The oxidation state of the Ru center does not change during this catalytic process.

Congratulations to Jingjing, Yulei, and Ke for their paper accepted in Chem. Commun.

Communication

Unexpected Higher Stabilisation of Two Classical Antiaromatic Frameworks with a Ruthenium Fragment over Osmium Counterpart: Origin Probed by DFT Calculations

Jingjing Wu,   Yulei Hao,   Ke An and   Jun Zhu  

Reactions of Hydrotris(pyrazolyl)borate (Tp)-Supported Ruthenium Dihydrogen Complexes [TpRu(L2)(H2)]+ (L2 = dppm, dppp, (PPh3)2) with O2

The η2-dihydrogen complex [TpRu(L2)(H2)]+ (L2 = dppm, dppp, or (PPh3)2) prepared in situ by protonation of the hydride precursor reacts with O2 to yield the paramagnetic RuIII-superoxo complex [TpRuIII(L2)(O2)]+, in which antiferromagnetic coupling between the RuIII ion (d5, S = 1/2) and the coordinated superoxide radical (S = 1/2) does not seem to be present.