reaction mechanisms

Catalytic Mechanisms of Transfer Hydrogenation of Azobenzene with Ammonia Borane by Pincer Bismuth Complex: Crucial Role of C=N Functional Group on the Pincer Ligand

Transfer hydrogenation of azobenzene with ammonia borane mediated by pincer bismuth complex 1 were systematically investigated through density functional theory calculations. An unusual metal-ligand cooperation mechanism was disclosed, in which the saturation/regeneration of the C=N functional group on the pincer ligand plays an essential role. The reaction is initiated by the hydrogenation of the C=N bond (saturation) with ammonia borane to afford 3CN, which is the rate-determining step with Gibbs energy barrier (ΔG≠) and Gibbs reaction energy (ΔG) of 25.6 and -7.3 kcal/mol, respectively.

Predicting Small Molecule Activation including Catalytic Hydrogenation of Dinitrogen Promoted by a Dual Lewis Acid

For decades, N2 activation and functionalization have required the use of transition metal complexes. Thus, it is one of the most challenging projects to activate the abundant dinitrogen through metal-free systems under mild conditions. Here, we demonstrate a proof-of-concept study on the catalytic hydrogenation of dinitrogen (with an activation energy as low as 15.3 kcal mol -1 ) initiated by a dual Lewis acid (DLA) via density functional theory (DFT) calculations.

Probing a General Strategy to Break the C-C Bond of Benzene by a Cyclic (Alkyl)(Amino)Aluminyl Anion

The oxidative addition of C-C bonds in aromatic hydrocarbons by low valent main group species has attracted considerable attention from both theoretical and experimental chemists due to the big challenge in breaking their aromaticity. Here, we demonstrate a general strategy to break the C-C bonds in benzene by cyclic (alkyl)(amino)aluminyl anion via density functional theory (DFT) calculations.

Chiral polycyclic benzosultams from photocatalytic diastereo- and enantioselective benzylic C–H functionalization

Asymmetric C(sp3)–H functionalization has emerged as a useful tool for simultaneous installation of functionality and chirality onto hydrocarbon units. Stereodiscrimination in reactions between a strong C(sp3)–H bond and a prochiral substrate, potentially forging vicinal stereogenic centers in a single step, however, remains a significant challenge. We report here a photocatalytic diastereo- and enantioselective C(sp3)–H functionalization/intramolecular cyclization reaction.

Predicting Dinitrogen Activation by Carborane-Based Frustrated Lewis Pairs

Activation of atmospherically abundant dinitrogen (N2) under mild conditions has been a great challenge in chemistry for decades because of the significantly strong N≡N triple bond. The traditional strategy of N2 activation was mainly limited to metallic species until the ground-breaking achievement of N2 activation by two-coordinated borylenes was achieved experimentally in 2018. On the other hand, carborane derivatives have attracted considerable interest for small-molecule activation. Still, the utilization of carborane derivatives in N2 activation remains elusive.

Reaction mechanisms of iron(iii) catalyzed carbonyl–olefin metatheses in 2,5- and 3,5-hexadienals: significant substituent and aromaticity effects

Olefin metathesis is a fundamental organic reaction of great importance that led to the 2005 Nobel Prize in Chemistry. As a variation of olefin–olefin metathesis, carbonyl–olefin metathesis (COM) is less developed, but still significant progress has been made recently. However, how the aromaticity affects the reaction mechanisms remains unclear. Here we perform density functional theory calculations on iron(III) catalyzed COM in 2,5- and 3,5-hexadienals.

Probing the Origin of Challenge of Realizing Metallaphosphabenzenes: Unfavorable 1,2-Migration in Metallapyridines Becomes Feasible in Metallaphosphabenzenes

Metallabenzenes have attracted considerable interest of both theoretical and experimental chemists. However, metallaphosphabenzene has never been synthesized. Thus, understanding the origin of the challenge of synthesizing metallaphosphabenzene is particularly urgent for experimentalists. Now density functional theory (DFT) calculations have been carried out to examine this issue.

Why Does Activation of the Weaker C═S Bond in CS2 by P/N-Based Frustrated Lewis Pairs Require More Energy Than That of the C═O Bond in CO2? A DFT Study

The sequestration of carbon disulfide (CS2), a common pollutant in environmental systems, is of great importance due to its physical harm to human beings. Compared with CO2 capture, that of CS2 is much less developed. The use of P/N-based frustrated Lewis pairs (FLPs) has been proven, both experimentally and theoretically, to be an alternative strategy to efficiently sequestrate CO2. Therefore, we pose the question of whether the analogue CS2 could also be sequestrated by the same FLPs, given that the C═S bond in CS2 is weaker than the C═O bond in CO2.

Mechanistic Insight into the Copper-Catalyzed Phosphorylation of Terminal Alkynes: A Combined Theoretical and Experimental Study

The reaction mechanism of copper-catalyzed phosphorylation of terminal alkynes under different conditions has been investigated experimentally and theoretically. The important role of dioxygen has been elucidated, including the formation of η1-superoxocopper(II), η2-superoxocopper(III), μ-η2:η2-peroxodicopper(II), and bis(μ-oxo)dicopper(III) complexes.

Mechanism, Reactivity, and Selectivity in Rh(III)-Catalyzed Phosphoryl-Directed Oxidative C–H Activation/Cyclization: A DFT Study

Density functional theory calculations (DFT) have been performed on Rh(III)-catalyzed phosphoryl-directed oxidative C–H activation/cyclization to investigate the detailed mechanism, including four basic steps: C–H activation, alkyne insertion, reductive elimination, and catalyst recycling, each of which consists of different steps. Interestingly, the Rh(III)–AgOAc catalyst system was found to be more favorable in the C–H activation step in comparison with the Rh(III)–Ag2CO3 system, whereas the Rh(I)–Ag2CO3 catalyst system was more efficient for catalyst recycling.