Aromaticity

Could π-aromaticity cross an unsaturated system to a fully saturated one?

The classification of π-/σ-aromaticity depends on the electrons with the dominating contributions. Traditionally, π- and σ-aromaticity are used to describe the unsaturated and saturated systems, respectively. Thus, it is rarely reported that π-aromaticity is dominated in a saturated system. Here we demonstrate that π-aromaticity could be dominating in several fully saturated four-membered rings (4MRs), supported by various aromaticity indices including ΔBL, NICS, EDDB, MCI, and AdNDP.

Exploiting heterocycle aromaticity to fabricate new hot exciton materials

Efficiently harvesting electroluminescent triplet excitons is of great importance for practical applications of organic light-emitting diodes (OLEDs). Hot exciton materials are regarded as the up-and-coming new generation luminogens and hold unique advantages for achieving high efficiency electroluminescent devices. Therefore, exploring a new molecular design strategy for developing new hot exciton materials remains a challenging yet fascinating task so far.

Dynamic Evolving Exothermicity Steers Ultrafast Formation of a Correlated Triplet Pair State

Singlet fission (SF) presents an attractive solution to overcome the Shockley–Queisser limit of single-junction solar cells. The conversion from an initial singlet state to final triplet is mediated by the correlated triplet pair state 1(T1T1). Despite significant advancement on 1(T1T1) properties and its role in SF, a comprehensive understanding of the energetic landscape during SF is still unclear.

The application of aromaticity and antiaromaticity to reaction mechanisms

Aromaticity, in general, can promote a given reaction by stabilizing a transition state or a product via a mobility of π electrons in a cyclic structure. Similarly, such a promotion could be also achieved by destabilizing an antiaromatic reactant. However, both aromaticity and transition states cannot be directly measured in experiment. Thus, computational chemistry has been becoming a key tool to understand the aromaticity-driven reaction mechanisms.

Aromaticity Concerto in Polycyclic Conjugated Hydrocarbons: Fusion Pattern on Combined Aromaticity Strategy Leads to Distinctive Excited State Photophysics of Dinaphthopentalenes

Understanding the structure–property relationships in polycyclic conjugated hydrocarbons (PCHs) is crucial for controlling their electronic properties and developing new optical function materials. Aromaticity is a fundamentally important and intriguing property of numerous organic chemical structures and has stimulated a myriad of experimental and theoretical investigations. Exploiting aromaticity rules for the rational design of optoelectronic materials with the desired photophysical characteristics is a challenging yet fascinating task.

Direct Conversion of N2 and O2 to Nitric Oxide at Room Temperature Initiated by Double Aromaticity in the Y2BO+ Cation

The conversion of dinitrogen to more useful and reactive molecules has been the focus of intense research by chemists. In contrast to reductive N2 fixation, direct oxidation of N2 by O2 to nitric oxide under mild conditions via a thermochemical process is extremely challenging. Herein, we report the first example of N2 and O2 activation and coupling under thermochemical conditions through the remarkable ability of Y2BO+ to react with one N2 and two O2 molecules.

Stabilizing a 20-Electron Metallaazulyne by Aromaticity

The 18-electron rule states that metal complexes with 18 valence electron metal centers are thermodynamically stable because nine valence orbitals of transition metals including one s orbital, three p orbitals, and five d orbitals can collectively accommodate 18 electrons, achieving the same electron configuration as the noble gas in the period. Thus, 20-electron compounds are extremely rare due to a violation of such a rule.

Phosphine-Stabilized Germylidenylpnictinidenes as Synthetic Equivalents of Heavier Nitrile and Isocyanide in Cycloaddition Reactions with Alkynes

The reactions of chlorogermylene MsFluindtBu-GeCl 1, supported by a sterically encumbered hydrindacene ligand MsFluindtBu, with NaPCO(dioxane)2.5 and NaAsCO(18-c-6) in the presence of trimethylphosphine afforded trimethylphosphine-stabilized germylidenyl-phosphinidene 2 and -arsinidene 3, respectively. Structural and computational investigations reveal that the Ge–E′ bond (E′ = P and As) features a multiple-bond character.

Probing the Origin of Ambiphilic Reactivity in Osmapentalyne Complexes: Interplay of Ring Strain, Aromaticity, and Phosphonium Substituent

Ambiphilic reactivity is a fascinating topic in chemical reactions, attracting considerable interest because ambiphilic reagents can display properties of both nucleophilicity and electrophilicity. However, most of the previous attention has been focused on the characterization of the ambiphilic reactivity, whereas the origin is less understood. Here we carry out thorough density functional theory (DFT) calculations to probe the origin of the ambiphilic reactivity of the carbyne atom in osmapentalynes, observed previously in experiment.

Isolation of a carbon nanohoop with Möbius topology

Carbon nanohoop, a class of constrained molecular architecture consisting of linked arene units, has attracted considerable interest from both experimental and theoretical chemists due to their synthetic challenge and aesthetic architectures. Another fascinating and synthetically challenging species, the Möbius-type molecule, has been attracting the scientific community with its elegant structure and aromaticity. Thus, combining two things together, synthesizing a carbon nanohoop with Möbius topology remains more challenging to date.

Pages