Kinetic Control in the Synthesis of a Möbius Tris((ethynyl)[5]helicene) Macrocycle Using Alkyne Metathesis
Submitted by Jun Zhu on Mon, 03/30/2020 - 09:39The synthesis of conjugated Möbius molecules remains elusive since twisted and macrocyclic structures are low entropy species sporting their own synthetic challenges. Here we report the synthesis of a Möbius macrocycle in 84% yield from the alkyne metathesis of 2,13-bispropynyl[5]helicene. MALDI-MS, NMR, and X-ray diffraction indicated a trimeric product of two-fold symmetry with PPM/MMP configurations in the helicene subunits.
Adaptive aromaticity in ruthenacycles
Submitted by Jun Zhu on Mon, 03/16/2020 - 09:21Adaptive aromaticity in the lowest singlet and triplet states is a rare property found among molecular systems. So far, only osmapentalene and osmapyridinium have been found to possess the adaptive aromaticity. Although it has been confirmed that the pattern of electron excitation is a key factor to achieve the adaptive aromaticity, further investigation of the metal center effect has not yet been made. Ruthenium, another Group 8 transition metal, can form metallacycles similar to the osmium counterparts.
Are Hetero‐metallapentalenes Aromatic or Not? A DFT Investigation
Submitted by Jun Zhu on Sat, 02/29/2020 - 15:38Aromaticity is one of the most basic concepts in organic chemistry. The planar Möbius aromatic metallapentalynes and metallapentalenes have been attracted considerable attention in the past few years. However, the aromaticity of metallapentalenes containing heteroatoms (such as B, N, and O), termed as hetero‐metallapentalenes, is rarely studied. Here, we theoretically investigated the stability and aromaticity of a series of hetero‐metallapentalenes.
Access to tetracyclic aromatics with bridgehead metals via metalla-click reactions
Submitted by Jun Zhu on Sat, 02/29/2020 - 15:19The never-ending pursuits for exploring aromatic molecular architectures result in the large libraries of aromatics with fascinating structures, which have greatly broadened the scope of aromaticity. Despite extensive efforts that have been paid to develop aromatic frameworks, the construction of polycyclic aromatics that share a bridgehead atom with more than three rings has never been accomplished.
Dinitrogen Activation by Tricoordinated Boron Species: A Systematic Design
Submitted by Jun Zhu on Fri, 02/28/2020 - 16:04Molecular nitrogen (N2), an abundant component of the atmosphere, is appealing for industrial value‐added products. However, its intrinsic inertness limits its activation to mainly metallic species. Environmental concerns and harsh reaction conditions have resulted in a demand for alternate nonmetallic and nontoxic routes to activate and functionalize N2 at ambient conditions. Comprehensive density functional theory (DFT) calculations are performed on N2 activation by boron species, specifically for the experimentally more accessible tricoordinated boron compounds.
Probing the Aromaticity and Stability of Metallatricycles by DFT Calculations: Toward Clar Structure in Organometallic Chemistry
Submitted by Jun Zhu on Fri, 02/28/2020 - 15:49Metallaaromatics have attracted considerable attention in recent years because they can display properties of both organic and organometallic species. However, it remains unclear whether Clar’s rule could be applied to organometallic chemistry despite its proposal in 1950s. Here, we investigate the relative stabilities of 49 organic and organometallic species by density functional theory (DFT) calculations.
Theoretical study on the stability and aromaticity in silapentafulvenes towards triplet ground state species
Submitted by Jun Zhu on Fri, 02/28/2020 - 15:26Pentafulvenes are dipolar hydrocarbons since they shift their π-electrons to achieve Hückel aromaticity and thus the electron donating groups at the exocyclic position can enhance their aromaticity. Silapentafulvenes are analogues of pentafulvene formed by the replacement of the carbon atoms at the exocyclic CC double bond with a silicon atom in pentafulvene. It remains unclear how the aromaticity of 5-silapentafulvenes and 6-silapentafulvenes can be changed due to the polarization of the CSi double bond.
Formation of Iridium(III) Complexes via Selective Activation of the C–H and N–H Bonds of a Dipyridylpyrrole Ligand
Submitted by Jun Zhu on Fri, 02/28/2020 - 11:02Treatment of [Ir(PPh3)3Cl] with 2-[5-(pyridin-2-yl)-1H-pyrrol-2-yl]pyridine (Hdpp) in refluxing toluene affords an unexpected pyrrole-metalated iridium(III) hydride complex, [Ir(K2C,N-dpp)(H)(Cl)(PPh3)2] (1), via Cpyrrole–H activation, while the presence of the base KOtBu as the deprotonation reagent produces a pyridine-metalated iridium(III) hydride complex, [Ir(K3C,N,N-dpp)(H)(PPh3)2] (2), via Cpyridine–H activation.
Isotopic Oxygen Exchange between CeO2 and O2: A Heteroexchange Mechanism
Submitted by Jun Zhu on Thu, 12/19/2019 - 02:46Isotopic oxygen exchange (IOE) is a crucial reaction required in the purification of 238PuO2 which has been used as an important fuel in space exploration. Experimental studies on the IOE between 238PuO2 and O2 are costly and hazardous due to the radioactivity. With extremely similar crystal structures, CeO2 could be a fair surrogate for 238PuO2 in the investigation of physicochemical properties. Here, we perform density functional theory calculations to simulate the IOE between CeO2 and O2, wherein a heteroexchange mechanism is proposed.
Aromaticity‐promoted CO2 Capture by P/N‐Based Frustrated Lewis Pairs: A Theoretical Study
Submitted by Jun Zhu on Thu, 12/19/2019 - 02:25Carbon dioxide (CO2, a common combustion pollutant) releasing continuously into the atmosphere is primarily responsible for the rising atmospheric temperature. Therefore, CO2 sequestration has been an indispensable area of research for the past several decades. On the other hand, the concept of aromaticity is often employed in designing chemical reactions and metal‐free frustrated Lewis pairs (FLPs) have proved ideal reagents to achieve CO2 reduction. However, considering FLP and aromaticity together is less developed in CO2 capture.