Aromaticity-promoted CS2 Activation by Heterocycle-Bridged P/N-FLPs: A Comparative DFT Study with CO2 Capture
Submitted by Jun Zhu on Tue, 12/21/2021 - 21:28Carbon dioxide (CO2) capture has attracted considerable attention from both experimental and theoretical chemists. In comparison, Carbon disulfide (CS2) activation is less developed. Here, we carry out a thorough comparative density functional theory study to examine the reaction mechanisms of CS2 activation by five-membered heterocycles-bridged P/N frustrated Lewis pairs (FLPs).
A Conjugated Figure-of-eight Oligoparaphenylene Nanohoop with Adaptive Cavities Derived from Cyclooctatetrathiophene Core
Submitted by Jun Zhu on Thu, 11/25/2021 - 15:05A fully conjugated figure-of-eight nanohoop is presented with facile synthesis. The molecule’s lemniscular skeleton features the combination of two strained oligoparaphenylene loops and a flexible cyclooctatetrathiophene core. Its rigid yet guest-adaptive cavities enable the formation of the peanut-like 1:2 host-guest complexes with C 60 or C 70 , which have been confirmed by X-ray crystallography and characterized in solution.
A Genuine Stannylone with a Monoatomic Two-Coordinate Tin(0) Atom Supported by a Bis(silylene) Ligand
Submitted by Jun Zhu on Sat, 11/20/2021 - 16:12The monoatomic zero-valent tin complex (stannylone) {[Si II (Xant)Si II ]Sn 0 } 5 stabilized by a bis(silylene)xanthene ligand, [Si II (Xant)Si II = PhC(N t Bu) 2 Si(Xant)Si(N t Bu) 2 CPh], and its bis-tetracarbonyliron complex {[Si II (Xant)Si II ]Sn 0 [Fe(CO) 4 ] 2 } 4 are reported. The stannylone 5 bearing a two-coordinate zero-valent tin atom is synthesized by reduction of the precursor 4 with potassium graphite.
Adaptive Aromaticity in 16-valence-electron Metallazapentalenes
Submitted by Jun Zhu on Tue, 11/09/2021 - 21:20According to Hückel’s and Baird’s rules, cyclic species are generally aromatic only either in the lowest singlet state (S0) or in the lowest-lying triplet ππ* excited state (T1). Thus, species with aromaticity both in S0 and T1 states (termed as adaptive aromaticity) are particularly rare. Herein, we carry out density functional theory (DFT) calculations to examine the aromaticity of 16e metallapentalenes containing heteroatoms (N, O).
Antiaromaticity-Promoted Radical Stability in α-Methyl Heterocyclics
Submitted by Jun Zhu on Thu, 10/14/2021 - 09:41Aromaticity is a fundamental and important concept in chemistry, and usually, the enhancement of aromaticity brings additional thermodynamic stability to a compound. Moreover, since radicals can act as intermediates in chemical reactions, they have attracted considerable attention from both experimental and theoretical chemists for a long time. However, it remains unclear whether there is a relationship between the thermodynamic stability of cyclic planar radicals and their aromaticity.
Achieving a Favorable Activation of the C–F Bond over the C–H Bond in Five- and Six-Membered Ring Complexes by a Coordination and Aromaticity Dually Driven Strategy
Submitted by Jun Zhu on Fri, 10/08/2021 - 16:42Activating the C–F bond (the strongest σ bond to carbon) is particularly challenging, let alone in a selective fashion when a weaker C–H bond is present in the same species. Herein, we demonstrate a novel strategy to achieve a thermodynamically and kinetically favorable activation of the C–F bond over the C–H bond dually driven by coordination and aromaticity via density functional theory calculations.
Releasing Antiaromaticity in Metal-Bridgehead Naphthalene
Submitted by Jun Zhu on Wed, 09/29/2021 - 15:34As a fundamental chemical property, aromaticity guides the synthesis of novel structures and materials. Replacing the carbon moieties of aromatic hydrocarbons with transition metal fragments is a promising strategy to synthesize intriguing organometallic counterparts with a similar aromaticity to their organic parents. However, since antiaromaticity will endow compound instability, it is a great challenge to obtain an antiaromatic organometallic counterpart based on such transition metal replacement in aromatic hydrocarbons.
[(CrGe9)Cr2(CO)13]4−: A disubstituted case of ten-vertex closo cluster with spherical aromaticity
Submitted by Jun Zhu on Thu, 09/02/2021 - 10:20We report the first disubstituted hetero-ten-vertex closo cluster [(CrGe9)Cr2(CO)13]4- with three adjacent Cr(CO)n units adopting both η5 and η1 coordination modes, which was synthesized through the reaction of “KGe1.67” with (MeCN)3Cr(CO)3 and Cr(CO)6 in ethylenediamine (en) solution. In contrast to the η1-Cr atoms forming localized two-center two-elelctron (2c-2e) Cr-Ge bonds, the hetero atom η5-Cr exhibits versatile bonding mechanisms including three 5c-2e and five 8c-2e delocalized bonds which account for Hückel aromaticity.
Osmapentalyne and Osmapentalene Complexes Containing Boron Monofluoride Ligands: Structure, Bonding and Adaptive Aromaticity
Submitted by Jun Zhu on Tue, 07/27/2021 - 19:44Osmapentalyne and osmapentalene complexes, now termed as carbolong species, have attracted considerable attention due to their novel structures, reactivities, chelating properties as well as Möbius and adaptive aromaticity. On the other hand, boron monofluoride (BF), a 10-electron diatomic molecule isoelectronic to carbon monoxide (CO), is unstable below 1800°C in the gas phase, and preparation of its metal complex is particularly challenging.
Predicting Dinitrogen Coupling with a Series of Small Molecules Catalyzed by a Pincer Complex
Submitted by Jun Zhu on Wed, 06/16/2021 - 08:56Due to consumption of more than 2% of the world's annual energy supply by Haber–Bosch process and the strongest triple bond (N≡N) in nature, directly coupling N 2 with small molecules is particularly important and challenging, let alone in a catalytic fashion. Here we first demonstrate that a NNN-type pincer phosphorus complex could act as a catalyst to couple dinitrogen with a series of small molecules including carbon dioxide, formaldehyde, N-ethylidenemethylamine, and acetonitrile in the presence of diborane(4) under a mild condition by theoretical calculations.