Synthesis of digermylene-stabilized linear tetraboronate and boroxine

Two newly discovered linear compounds tetraboronate and boroxine stabilized by digermylene are reported, which feature a B4O5 chain and a B3O3 ring, respectively. DFT calculations reveal that not only can digermylene stabilize the electron-deficient boron centers, but also increase the energies of the LUMOs of the boron moiety. Our results provide a hint for the development of boronate covalent organic frameworks.

Triplet State Aromaticity: NICS Criterion, Hyperconjugation, and Charge Effects

Aromaticity, one of the most important concepts in organic chemistry, has attracted considerable interest from both experimentalists and theoreticians. It remains unclear which NICS index is best to evaluate the triplet-state aromaticity. Here, we carry out thorough density functional theory (DFT) calculations to examine this issue. Our results indicate that among the various computationally available NICS indices, NICS(1)zz is the best for the triplet state.

σ Aromaticity Dominates in the Unsaturated Three-Membered Ring of Cyclopropametallapentalenes from Groups 7–9: A DFT Study

Aromaticity, an old but still fantastic topic, has long attracted considerable interest of chemists. Generally, π aromaticity is described by π-electron delocalization in closed circuits of unsaturated compounds whereas σ-electron delocalization in saturated rings leads to σ aromaticity. Interestingly, our recent study shows that σ aromaticity can be dominating in an unsaturated three-membered ring (3MR) of cyclopropaosmapentalene. An interesting question is raised: Can the σ aromaticity, which is dominant in the unsaturated 3MR, be extended to other cyclopropametallapentalenes?

The Clar Structure in Inorganic BN Analogues of Polybenzenoid Hydrocarbons: Does it Exist or Not?

The Clar structure of polybenzenoid hydrocarbons (PBHs) have attracted considerable interest of both theoretical and experimental chemists since it was proposed in the 1950s. However, it remains unclear whether the Clar structure could exist in inorganic PBHs, the boron nitride (BN) analogues where the alternate boron and nitrogen atoms are used to replace the carbon atoms of PBHs. Here, we carry out thorough density functional theory (DFT) calculations to probe the possibility of Clar structures in BN analogues of PBHs.

Unexpected higher stabilisation of two classical antiaromatic frameworks with a ruthenium fragment compared to the osmium counterpart: origin probed by DFT calculations

Density functional theory (DFT) calculations were carried out to investigate the stability and aromaticity of metallapentalocyclobutadienes. The results reveal unexpected higher stabilisation achieved with a 3d ruthenium fragment compared to the 4d osmium counterpart. Moreover, direct 1–3 metal–carbon bonding in the metallabutadiene unit of these two complexes is negligible.

http://pubs.rsc.org/en/content/articlelanding/2015/cc/c5cc08291a#!divAbstract

Congratulations to Jingjing, Yulei, and Ke for their paper accepted in Chem. Commun.

Communication

Unexpected Higher Stabilisation of Two Classical Antiaromatic Frameworks with a Ruthenium Fragment over Osmium Counterpart: Origin Probed by DFT Calculations

Jingjing Wu,   Yulei Hao,   Ke An and   Jun Zhu  

Stability, Reactivity, Selectivity, Catalysis, and Predictions of 1,3,2,5-Diazadiborinine: Computational Insight into a Boron–Boron Frustrated Lewis Pair

Recent progress in frustrated Lewis pairs (FLPs) has attracted increasing attention. However, most of the FLPs are composed of Lewis basic phosphines and Lewis acidic boranes. In 2015, Kinjo and co-workers reported the first intramolecular boron–boron FLP, namely, 1,3,2,5-diazadiborinine (1), which showed high regioselectivity in the reactions with methyl trifluoromethansulfonate, phenylacetylene, and CO2. More interestingly, the activation of CO2 was found to be reversible when the temperature was elevated to 90 °C.

Five-Membered Cyclic Metal Carbyne: Synthesis of Osmapentalynes by the Reactions of Osmapentalene with Allene, Alkyne, and Alkene

The synthesis of small cyclic metal carbynes is challenging due to the large angle strain associated with the highly distorted nonlinear triple bonds. Herein, we report a general route for the synthesis of five-membered cyclic metal carbyne complexes, osmapentalynes, by the reactions of an osmapentalene derivative with allene, alkyne, and alkene. Experimental observations and theoretical calculations document the aromaticity in the fused five-membered rings of osmapentalynes.

Pages